Focal adhesion kinase mediates MEF2 and c-Jun activation by stretch: role in the activation of the cardiac hypertrophic genetic program.
نویسندگان
چکیده
OBJECTIVE We have previously reported that myocyte enhancer factor-2 (MEF2) transcription factors and c-Jun are rapidly activated by pressure overload and that these events are involved in the early activation of the myocardial hypertrophic genetic program. In this study, we investigated whether focal adhesion kinase (FAK) mediates the activation of MEF2 and c-Jun by mechanical stress in isolated neonatal rat ventricular myocytes (NRVMs). METHODS NRVMs were subjected to cyclic stretch up to 4 h and studied by immunoblotting, reverse transcriptase-polymerase chain reaction, laser confocal analysis, and reporter gene and electrophoretic mobility shift assays. Analysis was extended to NRVMs transfected with FAK-antisense oligodeoxynucleotide, treated with FAK/Src inhibitor PP2 or JNK/c-Jun inhibitor SP600125. RESULTS Cyclic stretch increased c-Jun expression, JNK/c-Jun phosphorylation, and MEF2-DNA binding activity in NRVMs. Reporter gene assays indicated that the MEF2 site is critical to c-jun transcription in stretched cells. FAK-antisense transfection abolished MEF2 and c-jun promoter activation, while either FAK-antisense or PP2 treatment inhibited the stretch-induced c-Jun expression and JNK/c-Jun phosphorylation. Finally, treatment of NRVMs with the specific JNK/c-Jun inhibitor SP600125 significantly reduced the stretch-induced increase of atrial natriuretic factor promoter activity. CONCLUSION The present data indicate that FAK regulates the activation of MEF2 and JNK/c-Jun pathways, which in turn have a key role in the early activation of the hypertrophic genetic program by mechanical stress in cardiac myocytes.
منابع مشابه
Integrins play a critical role in mechanical stress-induced p38 MAPK activation.
Mechanical stress activates various hypertrophic responses, including activation of mitogen-activated protein kinases (MAPKs) in cardiac myocytes. Stretch activated extracellular signal-regulated kinases partly through secreted humoral growth factors, including angiotensin II, whereas stretch-induced activation of c-Jun NH(2)-terminal kinases and p38 MAPK was independent of angiotensin II. In t...
متن کاملFocal adhesion kinase is activated and mediates the early hypertrophic response to stretch in cardiac myocytes.
Previously we reported that the rapid activation of the Fak/Src multicomponent signaling complex mediates load-induced activation of growth and survival signaling pathways in adult rat heart. In this study, we report that 5% to 20% (10-minute) cyclic stretch (1 Hz) of neonatal rat ventricular myocytes (NRVMs) was paralleled by increases of Fak phosphorylation at Tyr-397 (from 1.5- to 2.8-fold),...
متن کاملThe Effect of Eight- Week High-Intensity Interval Training on the Expression of Cardiac Angiostatin and Focal adhesion Kinase Proteins at Left Ventricle in Diabetic Rats
Background: Diabetes can increase cardiovascular disease by altering the equilibrium between angiogenic stimulants and inhibitors of angiogenesis. In this study, we investigated the effect of High-Intensity Interval Training (HIIT) on angiostatin and focal adhesion kinase (FAK-1) in left ventricle cardiomyocytes in diabetic rats. Methods: In this experimental study, 24 male Wistar rats were ra...
متن کاملSignal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases.
Myocyte enhancer factor-2 (MEF2) transcription factors control muscle-specific and growth factor-inducible genes. We show that hypertrophic growth of cardiomyocytes in response to phenylephrine and serum is accompanied by activation of MEF2 through a posttranslational mechanism mediated by calcium, calmodulin-dependent protein kinase (CaMK), and mitogen-activated protein kinase (MAPK) signaling...
متن کاملFAK mediates the activation of cardiac fibroblasts induced by mechanical stress through regulation of the mTOR complex.
AIMS Cardiac fibroblasts are activated by mechanical stress, but the underlying mechanisms involved remain poorly understood. In this study, we investigated whether focal adhesion kinase (FAK) plays a role in the activation of cardiac fibroblasts in response to cyclic stretch. METHODS AND RESULTS Neonatal (NF-P3/80--third passage, 80% confluence) and adult (AF-P1/80--first passage, 80% conflu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cardiovascular research
دوره 68 1 شماره
صفحات -
تاریخ انتشار 2005